Transformation pathways of MeO-PBDEs catalyzed by active center of P450 enzymes: a DFT investigation employing 6-MeO-BDE-47 as a case.

نویسندگان

  • Xingbao Wang
  • Jingwen Chen
  • Yong Wang
  • Hongbin Xie
  • Zhiqiang Fu
چکیده

Recent in vivo and in vitro experiments indicated that methoxylated polybrominated diphenyl ethers (MeO-PBDEs) can be biotransformed into hydroxylated PBDEs (HO-PBDEs) that are more toxic than PBDEs and MeO-PBDEs. Nevertheless, the enzymatic transformation mechanism is not clear. We hypothesized that cytochrome P450 enzymes (CYPs) play a key role in the transformation and employed the density functional theory calculations to unveil the mechanism. The transformation of a model compound, 6-MeO-BDE-47, catalyzed by the active center of CYPs (Compound I), was computed. For the first time, our results show that the energy barriers for the addition of Compound I to the C atoms on the phenyl of 6-MeO-BDE-47 are much higher than that for hydroxylation of the methoxyl, indicating that O-demethylation is a dominating metabolic pathway. This is in line with experimental observations performed by others. The pathways for the transformation of 6-MeO-BDE-47 catalyzed by Compound I were clarified. A C-H bond of the methoxyl is activated by Compound I, followed by radical rebound to form carbinol intermediates, then the carbinols decompose to form 6-HO-BDE-47 with the assistance of water molecules. The computational method can be potentially employed to develop models that predict biotransformation of xenobiotics catalyzed by CYPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio).

OH-PBDEs have been reported to be more potent than the postulated precursor PBDEs or corresponding MeO-PBDEs. However, there are contradictory reports for transformation of these compounds in organisms, particularly, for biotransformation of OH-PBDEs and MeO-PBDEs, only one study reported transformation of 6-OH-BDE-47 and 6-MeO-BDE-47 in Japanese medaka. In present study zebrafish (Danio rerio)...

متن کامل

Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka.

Polybrominated diphenyl ethers (PBDEs), hydroxylated (OH) and methoxylated (MeO), have been widely detected in aquatic environments. However, relationships among these structurally related compounds in exposed organisms are unclear. To elucidate biotransformation relationships among BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47, dietary accumulation, maternal transfer, and tissue distribution of these ...

متن کامل

Bioaccumulation, biotransformation, and toxicity of BDE-47, 6-OH-BDE-47, and 6-MeO-BDE-47 in early life-stages of zebrafish (Danio rerio).

2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), 6-hydroxy-tetrabromodiphenyl ether (6-OH-BDE-47), and 6-methoxy-tetrabromodiphenyl ether (6-MeO-BDE-47) are the most detected congeners of polybrominated diphenyl ethers (PBDEs), OH-BDEs, and MeO-BDEs, respectively, in aquatic organisms. Although it has been demonstrated that BDE-47 can interfere with certain endocrine functions that are mediated thr...

متن کامل

Hydroxylated and methoxylated polybrominated diphenyl ethers in a Canadian Arctic marine food web.

Residues of hydroxylated (OH-) and methoxylated (MeO-) polybrominated diphenyl ethers (PBDEs) have been previously detected in precipitation, surface waters, wildlife, and humans. We report measured concentrations of OH-PBDEs, MeO-PBDEs, and Br3-Br7 PBDEs in sediments and biota from a Canadian Arctic marine food web. PBDEs exhibited very low trophic magnification factors (TMFs between 0.1-1.6),...

متن کامل

In vitro dioxin-like potencies of HO- and MeO-PBDEs and inter-species sensitivity variation in birds.

UNLABELLED Due to their bioaccumulative properties, hydroxylated and methoxylated polybrominated diphenyl ethers (HO-/MeO-PBDEs) may pose ecological risks to wild life, including birds. However, their toxicity potencies in avian species are largely unknown. In the present study, an avian AHR1 luciferase reporter gene (LRG) assay with luciferase probes from chicken, pheasant and quail was used t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemosphere

دوره 120  شماره 

صفحات  -

تاریخ انتشار 2015